Unsupervised Change Detection using Image Fusion and Kernel K-Means Clustering
نویسنده
چکیده
Change detection algorithms play a vital role in overseeing the transformations on the earth surface. Unsupervised change detection has a indispensable role in an immense range of applications like remote sensing, motion detection, environmental monitoring, medical diagnosis, damage assessment, agricultural surveys, surveillance etc In this paper, a novel method for unsupervised change detection in synthetic aperture radar(SAR) images based on image fusion and kernel K-means clustering is proposed. Here difference image is generated by performing image fusion on mean-ratio and log-ratio image and for fusion discrete wavelet transform is used. On the difference image generated by collecting the information from mean-ratio and log-ratio image kernel Kmeans clustering is performed. In kernel K-means clustering, non-linear clustering is performed, as a result the false alarm rate is reduced and accuracy of the clustering process is enhanced. The aggregation of image fusion and kernel Kmeans clustering is seen to be more effective in detecting the changes than its preexistences.
منابع مشابه
Change Detection in Synthetic Aperture Radar Images Using Contourlet Based Fusion and Kernel K-Means Clustering
Change detection algorithms play a vital role in overseeing the transformations on the earth surface. Unsupervised change detection has an indispensable role in an immense range of applications like remote sensing, motion detection, environmental monitoring, medical diagnosis, damage assessment, agricultural surveys, surveillance etc. In this paper, a novel method for unsupervised change detect...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملTexture Features and Segmentation Based on Multifractal Approach
In this paper, we use a multifractal approach based on the computation of two spectrums for image analysis and texture segmentation problems. The two spectrums are the Legendre Spectrum, determined by classical methods, and the Large Deviation Spectrum, determined by kernel density estimation. We propose a way for the fusion of these two spectrums to improve textured image segmentation results....
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملUnsupervised Change Detection by Kernel Clustering
This paper presents a novel unsupervised clustering scheme to find changes in two or more coregistered remote sensing images acquired at different times. This method is able to find nonlinear boundaries to the change detection problem by exploiting a kernel-based clustering algorithm. The kernel k-means algorithm is used in order to cluster the two groups of pixels belonging to the ‘change’ and...
متن کامل